

PyUniProt Documentation

for version: 0.0.10

PyUniProt is python software interface developed by the
Department of Bioinformatics [https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics.html]
at the Fraunhofer Institute for Algorithms and Scientific Computing
SCAI [https://www.scai.fraunhofer.de/en.html]
to the data provided by the European Bioinformatics Institute (EMBL-EBI) [http://www.ebi.ac.uk/] on their
UniProt website [http://www.uniprot.org/uniprot/].

The content of UniProt and the use of PyUniProt in combination with PyBEL [https://pyuniprot.readthedocs.io/en/latest/] supports
successfully scientists in the IMI [https://www.imi.europa.eu/] funded projects
AETIONOMY [http://www.aetionomy.eu/] and PHAGO [https://www.imi.europa.eu/content/phago]
in the identification of potential drugs in complex disease networks with several thousands of
relationships compiled from BEL [http://openbel.org/] statements.

Aim of this software project is to provide an programmatic access to locally stored UniProt data and
allow a filtered export in several formats used in the scientific community. Many query functions allow search in the
data and use it as pandas.DataFrame in Jupyter notebooks.
We will focus our software development on the analysis and extension of biological disease knowledge networks.
PyUniProt is an ongoing project and needs improvement. We are happy if you want support our project or start
a scientific cooperation with us.

[image: ER model of PyUniProt database]

Fig. 1: ER model of PyUniProt database

	supported by IMI [https://www.imi.europa.eu/], AETIONOMY [http://www.aetionomy.eu/], PHAGO [https://www.imi.europa.eu/content/phago].

[image: _images/imi-logo.png]
[image: _images/aetionomy-logo.png]
[image: _images/scai-logo.svg]

	1. Installation
	1.1. System requirements

	1.2. Supported databases

	1.3. Install software

	1.4. Changing database configuration

	2. Quick start

	3. Tutorial

	4. Query functions
	4.1. Before you query

	4.2. entry

	4.3. disease

	4.4. disease_comment

	4.5. other_gene_name

	4.6. alternative_full_name

	4.7. alternative_short_name

	4.8. accession

	4.9. pmid

	4.10. organismHost

	4.11. dbReference

	4.12. feature

	4.13. function

	4.14. keyword

	4.15. ec_number

	4.16. subcellular_location

	4.17. tissue_specificity

	4.18. tissue_in_reference

	5. Query properties
	5.1. dbreference_types

	5.2. taxids

	5.3. datasets

	5.4. feature_types

	5.5. subcellular_locations

	5.6. tissues_in_references

	5.7. keywords

	6. RESTful API

	7. UniProt
	7.1. About

	7.2. Citation

	7.3. Links

	8. Benchmarks
	8.1. MySQL/MariaDB

Reference

	Query
	Examples

	Methods by examples

	Properties

	Query Manager Reference

	Data Models
	Entry

	Accession

	OtherGeneName

	Sequence

	Disease

	DiseaseComment

	AlternativeFullName

	AlternativeShortName

	Accession

	Pmid

	OrganismHost

	DbReference

	Feature

	Function

	Keyword

	ECNumber

	SubcellularLocation

	TissueSpecificity

	TissueInReference

Project

	1. Roadmap

	2. Technology
	2.1. Versioning

	2.2. Testing in PyUniProt
	2.2.1. Tox

	2.2.2. Continuous Integration

	2.2.3. Code Coverage

	2.3. Distribution
	2.3.1. Versioning

	2.3.2. Deployment

Acknowledgment and contribution to scientific projects

Software development by:

	Christian Ebeling [https://www.scai.fraunhofer.de/de/ueber-uns/mitarbeiter/ebeling.html]

The software development of PyUniProt by Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) is supported
and funded by the IMI [https://www.imi.europa.eu/]
(INNOVATIVE MEDICINES INITIATIVE) projects AETIONOMY [http://www.aetionomy.eu/] and
PHAGO [https://www.imi.europa.eu/content/phago]. The aim of both projects is the identification of mechnisms in
Alzhiemer’s and Parkinson’s disease in complex biological BEL [http://openbel.org/] networks for drug development.

Indices and Tables

	Index

	Module Index

	Search Page

1. Installation

1.1. System requirements

Because of the rich content of UniProt PyUniProt will create already for human, mouse and rat more than 5.7 million rows
(08-04-017) with ~0.5 GiB of disk storage (depending on the used RDMS). Full installation (all organisms) will will
need more than 5 GiB of disk storage.

Tests were performed on Ubuntu 16.04, 4 x Intel Core i7-6560U CPU @ 2.20Ghz with
16 GiB of RAM. In general PyUniProt should work also on other systems like Windows,
other Linux distributions or Mac OS.

1.2. Supported databases

PyUniProt uses SQLAlchemy [http://sqlalchemy.readthedocs.io] to cover a wide spectrum of RDMSs
(Relational database management system). For best performance MySQL or MariaDB is recommended. But if you have no
possibility to install software on your system SQLite - which needs no further
installation - also works. Following RDMSs are supported (by SQLAlchemy):

	Firebird

	Microsoft SQL Server

	MySQL / MariaDB [https://mariadb.org/]

	Oracle

	PostgreSQL

	SQLite

	Sybase

1.3. Install software

The following instructions are written for Linux/MacOS. The way you install python software on Windows could be a
little bit different.

In general there are 2 ways to install the software:

	Using stable version from pypi

	Using latest development version from github

Please note that option number 2 is only recommended for experienced programmers interested in the source code. Also
this software version is in development stage and we can not guarantee that the software is stable.

Often is make sense to avoid conflicts with other python installations by using different virtual environments. More
information about an easy way to manage different virtual environments you find
here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html].

	If you want to install pyuniprot system wide use superuser (sudo for Ubuntu):

sudo pip install pyuniprot

	If you have no sudo rights install as user

pip install --user pyuniprot

	If you want to make sure you install pyuniprot in python3 environment:

sudo python3 -m pip install pyuniprot

	If you are an experienced python with interest in the latest development version, clone and install from github

git clone https://github.com/cebel/pyuniprot.git
cd pyuniprot
pip install -e .

1.3.1. MySQL/MariaDB setup

In general you don’t have to setup any database, because by default pyuniprot uses file based SQLite. But we strongly
recommend to use MySQL/MariaDB.

Log in MySQL/MariaDB as root user and create a new database, create a user, assign the rights and flush privileges.

CREATE DATABASE pyuniprot CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON pyuniprot.* TO 'pyuniprot_user'@'%' IDENTIFIED BY 'pyuniprot_passwd';
FLUSH PRIVILEGES;

Start a python shell and set the MySQL configuration. If you have not changed anything in the SQL statements …

import pyuniprot
pyuniprot.set_mysql_connection()

If you have used you own settings, please adapt the following command to you requirements.

import pyuniprot
pyuniprot.set_mysql_connection()
pyuniprot.set_mysql_connection(host='localhost', user='pyuniprot_user', passwd='pyuniprot_passwd', db='pyuniprot')

1.3.2. Updating

The updating process will download a gzipped file provided by the UniProt team on the
download page [http://www.uniprot.org/downloads]

Please note that download file needs ~700 Mb of disk space and the update can take several hours
(depending on your system). With every update a new database will created.

import pyuniprot
pyuniprot.update()

To make sure that the latest UniProt version is used, use the parameter force_download

import pyuniprot
pyuniprot.update(force_download=True)

1.4. Changing database configuration

Following functions allow to change the connection to you RDBMS (relational database management system). Next
time you will use pyuniprot by default this connection will be used.

To set a new MySQL/MariaDB connection …

import pyuniprot
pyuniprot.set_mysql_connection(host='localhost', user='pyuniprot_user', passwd='pyuniprot_passwd', db='pyuniprot')

To set connection to other database systems use the pyuniprot.set_connection function.

For more information about connection strings go to
the SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html].

Examples for valid connection strings are:

	mysql+pymysql://user:passwd@localhost/database?charset=utf8

	postgresql://scott:tiger@localhost/mydatabase

	mssql+pyodbc://user:passwd@database

	oracle://user:passwd@127.0.0.1:1521/database

	Linux: sqlite:////absolute/path/to/database.db

	Windows: sqlite:///C:\path\to\database.db

import pyuniprot
pyuniprot.set_connection('oracle://user:passwd@127.0.0.1:1521/database')

2. Quick start

This guide helps you to quickly setup your system in several minutes. But running the database import process and
indexing takes still several hours.

Note

If your colleague have already executed the import process (perhaps on a special database server)
please request the connection data to use PyUniProt without the need of running the update process.

Please make sure you have installed

	MariaDB [https://mariadb.org/] or any other supported RDMS Supported databases

	Python3 [https://www.python.org/downloads/]

Please note that you can also install with pip even if you are have no root rights on your machine.
Just add –user behind install.

python3 -m pip install pyuniprot

Make sure that you have access to a database with user name and correct permissions. Otherwise execute on the MariaDB
or MySQL console the following command as MySQL/MariaDb root. Replace user name, password and servername
(here localhost) to our needs:

CREATE DATABASE `pyuniprot` CHARACTER SET utf8 COLLATE utf8_general_ci;
CREATE USER 'pyuniprot_user'@'localhost' IDENTIFIED BY 'pyuniprot_passwd';
GRANT ALL PRIVILEGES ON pytcd.* TO 'pyuniprot_user'@'localhost';
FLUSH PRIVILEGES;

Import UniProt data into database, but before change the SQLAlchemy connection string (line 2) to allow a connection
to the database. If you have used the default code block and don’t have to change anything.

Start your python console:

python3

Import the data:

import pyuniprot
pyuniprot.set_mysql_connection(host='localhost', user='pyuniprot_user', passwd='pyuniprot_passwd', db='pyuniprot')
pyuniprot.update(sqlalchemy_connection_string)

For examples how to query the database go to pyuniprot.manager.database.Query or Tutorial

3. Tutorial

Here a short tutorial is planned.

4. Query functions

Contents

	Query functions

	Before you query

	1. You can use % as a wildcard.

	2. limit to restrict number of results

	3. Return pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame] as result

	4. show all columns as dict

	5. Return single values with key name

	6. Access to the linked data models (1-n, n-m)

	7. Entry name is available in almost all methods

	entry

	disease

	disease_comment

	other_gene_name

	alternative_full_name

	alternative_short_name

	accession

	pmid

	organismHost

	dbReference

	feature

	function

	keyword

	ec_number

	subcellular_location

	tissue_specificity

	tissue_in_reference

	Query properties

	dbreference_types

	taxids

	datasets

	feature_types

	subcellular_locations

	tissues_in_references

	keywords

4.1. Before you query

4.1.1. 1. You can use % as a wildcard.

import pyuniprot
query = pyuniprot.query()

exact search
query.entry(recommended_name='Amyloid beta A4 protein')

starts with 'Amyloid beta'
query.entry(recommended_name='Amyloid beta%')

ends with 'A4 protein'
query.entry(recommended_name='%A4 protein')

contains 'beta A4'
query.entry(recommended_name='%beta A4%')

4.1.2. 2. limit to restrict number of results

import pyuniprot
query = pyuniprot.query()

query.entry(limit=10)

Use an offset by paring a tuple (page_number, number_of_results_per_page) to the parameter limit.

page_number starts with 0!

import pyuniprot
query = pyuniprot.query()

first page with 3 results (every page have 3 results)
query.entry(limit=(0,3))
fourth page with 10 results (every page have 10 results)
query.entry(limit=(4,10))

4.1.3. 3. Return pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame] as result

This is very useful if you want to profit from amazing pandas functions.

import pyuniprot
query = pyuniprot.query()

query.entry(as_df=True)

4.1.4. 4. show all columns as dict

import pyuniprot
query = pyuniprot.query()

first_entry = query.entry(limit=1)[0]
first_entry.__dict__

4.1.5. 5. Return single values with key name

import pyuniprot
query = pyuniprot.query()

query.entry(recommended_full_name='%kinase')[0].recommended_full_name

4.1.6. 6. Access to the linked data models (1-n, n-m)

For example entry can access

	sequence

	accessions

	organism_hosts

	features

	functions

	ec_numbers

	db_references

	alternative_full_names

	alternative_short_names

	disease_comments

	tissue_specificities

	other_gene_names

import pyuniprot
query = pyuniprot.query()

r = query.entry(limit=1)[0]

r.sequence
r.accessions
r.organism_hosts
r.features
r.functions
r.ec_numbers
r.db_references
r.alternative_full_names
r.alternative_short_names
r.disease_comments
r.tissue_specificities
r.other_gene_names

But from EC number you can go back to entry

import pyuniprot
query = pyuniprot.query()

r = query.ec_number(ec_number='1.1.1.1')
[x.entry for x in r]
following is crazy but possible, again go back to ec_number
[x.entry.ec_numbers for x in r]

4.1.7. 7. Entry name is available in almost all methods

In almost all function you have the parameter entry_name (primary key for UniProt entries) even it is not part of the
model.

import pyuniprot
query = pyuniprot.query()

query.other_gene_name(entry_name='A4_HUMAN')

4.2. entry

import pyuniprot
query = pyuniprot.query()

query.entry(name='1433E_HUMAN', recommended_full_name='14-3-3 protein epsilon', gene_name='YWHAE')

Check documentation of pyuniprot.manager.query.QueryManager.entry() for all available parameters.

4.3. disease

import pyuniprot
query = pyuniprot.query()

query.disease(acronym='AD')

Check documentation of pyuniprot.manager.query.QueryManager.disease() for all available parameters.

4.4. disease_comment

import pyuniprot
query = pyuniprot.query()

query.disease_comment(comment='%Alzheimer%')

Check documentation of pyuniprot.manager.query.QueryManager.disease_comment() for all available parameters.

4.5. other_gene_name

import pyuniprot
query = pyuniprot.query()

query.other_gene_name(entry_name='A4_HUMAN')

Check documentation of pyuniprot.manager.query.QueryManager.other_gene_name() for all available parameters.

4.6. alternative_full_name

import pyuniprot
query = pyuniprot.query()

query.alternative_full_name(name='Alzheimer disease amyloid protein')

Check documentation of pyuniprot.manager.query.QueryManager.alternative_full_name() for
all available parameters.

4.7. alternative_short_name

import pyuniprot
query = pyuniprot.query()

query.alternative_short_name(entry_name='A4_HUMAN')

Check documentation of pyuniprot.manager.query.QueryManager.alternative_short_name() for all
available parameters.

4.8. accession

import pyuniprot
query = pyuniprot.query()

query.accession(accession='P05067', entry_name='A4_HUMAN')

Check documentation of pyuniprot.manager.query.QueryManager.accession() for all available parameters.

4.9. pmid

import pyuniprot
query = pyuniprot.query()

query.pmid(pmid=7644510)

Check documentation of pyuniprot.manager.query.QueryManager.pmid() for all available parameters.

4.10. organismHost

import pyuniprot
query = pyuniprot.query()

query.organism_host(taxid=9606)
0 results if you have only installed human

Check documentation of pyuniprot.manager.query.QueryManager.organism_host() for all available parameters.

4.11. dbReference

import pyuniprot
query = pyuniprot.query()

query.db_reference(type_='EMBL', identifier='U20972')

Check documentation of pyuniprot.manager.query.QueryManager.db_reference() for all available parameters.

4.12. feature

import pyuniprot
query = pyuniprot.query()

query.feature(type_='sequence variant', limit=1)

Check documentation of pyuniprot.manager.query.QueryManager.feature() for all available parameters.

4.13. function

import pyuniprot
query = pyuniprot.query()

query.function(text='%Alzheimer%')

Check documentation of pyuniprot.manager.query.QueryManager.function() for all available parameters.

4.14. keyword

import pyuniprot
query = pyuniprot.query()

r = query.keyword(name='Phagocytosis')[0]
[x.entry for x in r] # all proteins linked to keyword Phagocytosis

Check documentation of pyuniprot.manager.query.QueryManager.keyword() for all available parameters.

4.15. ec_number

import pyuniprot
query = pyuniprot.query()

query.ec_number(ec_number='1.1.1.1')

Check documentation of pyuniprot.manager.query.QueryManager.ec_number() for all available parameters.

4.16. subcellular_location

import pyuniprot
query = pyuniprot.query()

query.subcellular_location(location='Autophagosome lumen')

Check documentation of pyuniprot.manager.query.QueryManager.subcellular_location() for all available
parameters.

4.17. tissue_specificity

import pyuniprot
query = pyuniprot.query()

query.tissue_specificity(comment='%brain%', limit=1)

Check documentation of pyuniprot.manager.query.QueryManager.tissue_specificity() for all available
parameters.

4.18. tissue_in_reference

import pyuniprot
query = pyuniprot.query()

query.tissue_in_reference(tissue: 'Substantia nigra')

Check documentation of pyuniprot.manager.query.QueryManager.tissue_in_reference() for all available
parameters.

5. Query properties

5.1. dbreference_types

import pyuniprot
query = pyuniprot.query()
query.dbreference_types

5.2. taxids

import pyuniprot
query = pyuniprot.query()
query.taxids

5.3. datasets

import pyuniprot
query = pyuniprot.query()
query.datasets

5.4. feature_types

import pyuniprot
query = pyuniprot.query()
query.feature_types

5.5. subcellular_locations

import pyuniprot
query = pyuniprot.query()
query.subcellular_locations

5.6. tissues_in_references

import pyuniprot
query = pyuniprot.query()
query.tissues_in_references

5.7. keywords

import pyuniprot
query = pyuniprot.query()
query.keywords

6. RESTful API

PyUniProt provides also a RESTful API web server.

Start the server with

pyuniprot web

Open PyUniProt Web API [http://127.0.0.1:5000/apidocs/] in a web browser.

7. UniProt

We want to pay tribute to the UniProt team for their amazing resource their provide to the scientific community.
pyuniprot only provides methods to download and locally query open accessible
UniProt [http://www.uniprot.org] data.

7.1. About

	Citation from UniProt website (about) [http://www.uniprot.org/help/about/] [08/11/2017]:

	“The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data.
The UniProt databases are the UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), and
the UniProt Archive (UniParc).

UniProt is a collaboration between the European Bioinformatics Institute (EMBL-EBI), the SIB Swiss Institute of
Bioinformatics and the Protein Information Resource (PIR). Across the three institutes more than 100 people are
involved through different tasks such as database curation, software development and support.

EMBL-EBI and SIB together used to produce Swiss-Prot and TrEMBL, while PIR produced the Protein Sequence
Database (PIR-PSD). These two data sets coexisted with different protein sequence coverage and annotation
priorities. TrEMBL (Translated EMBL Nucleotide Sequence Data Library) was originally created because sequence
data was being generated at a pace that exceeded Swiss-Prot’s ability to keep up. Meanwhile, PIR maintained
the PIR-PSD and related databases, including iProClass, a database of protein sequences and curated families.
In 2002 the three institutes decided to pool their resources and expertise and formed the UniProt consortium.

The UniProt consortium is headed by Alex Bateman (PI), Cathy Wu, and Ioannis Xenarios, supported by key staff,
and receives valuable input from an independent Scientific Advisory Board.”

Note

Please note that PyUniProt not covers all parts of UniProtKB. UniRef and UniParc are in the moment not acessible
via the library. Only Swiss-Prot is included, TrEMBL will follow in the next version of PyUniProt.

7.2. Citation

Latest UniProt publication:

The UniProt Consortium
UniProt: the universal protein knowledgebase
Nucleic Acids Res. 45: D158-D169 (2017) [https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1099]
(PDF [https://goo.gl/1GSJbu])

7.3. Links

Link to data: UniProt ftp download page [ftp://ftp.uniprot.org/pub/databases/uniprot/]

Check the UniProt website [http://uniprot.org] for more information about data and online tools

8. Benchmarks

All benchmarks created on a standard notebook:

	OS: Linux Ubuntu 16.04.2 LTS (xenial)

	Python: 3.5.2

	Hardware: x86_64, Intel(R) Core(TM) i7-6560U CPU @ 2.20GHz, 4 CPUs, Mem 16Gb

	MariaDB: Server version: 10.0.29-MariaDB-0ubuntu0.16.04.1 Ubuntu 16.04

8.1. MySQL/MariaDB

Database created with following command in MySQL/MariaDB as root:

CREATE DATABASE pyuniprot CHARACTER SET utf8 COLLATE utf8_general_ci;

User created with following command in MySQL/MariaDB:

GRANT ALL PRIVILEGES ON pyuniprot.* TO 'pyuniprot_user'@'%' IDENTIFIED BY 'pyuniprot_passwd';
FLUSH PRIVILEGES;

Import of UniProt for human, mouse and rat (NCBI taxonomy IDs: 9606, 10090, 10116) data executed with:

import pyuniprot
pyuniprot.set_mysql_connection()
pyuniprot.update(taxids=[9606, 10090, 10116])

	CPU times: user 2h 5min 11s, sys: 35.8 s, total: 2h 5min 47s

Query

Contents

	Query

	Examples

	Methods by examples

	Properties

	Query Manager Reference

Examples

For all string parameters you can use % as wildcard (please check the documentation below). All methods
have a parameter limit which allows to limit the number of results and as_df which allows to return
a pandas.DataFrame.

Initialize query object

import pyuniprot
pyuniprot.update(taxids=[9606,10090,10116]) # human, mouse, rat update
query = pyuniprot.query()

Methods by examples

search for …

	human proteins with gene name ‘TP53’ (taxid=9606)

	>>> query.entry(gene_name='TP53', taxid=9606)
[Cellular tumor antigen p53]

	human proteins with recommended full name starts with ‘Myeloid cell surface’ (use % at the end)

	>>> query.entry(recommended_full_name='Myeloid cell surface%', taxid=9606)
[Myeloid cell surface antigen CD33]

find all UniProt entries where the recommended full name contains ‘CD33’ (% at the start and end of search term) and
return as pandas.DataFrame

>>> results = query.entry(name='%CD33%', taxid=9606, as_df=True)
get first 2 lines of results with columns 'name','recommended_full_name', 'taxid'
>>> my_results_as_data_frame.ix[:2,('name','recommended_full_name', 'taxid')]
 name recommended_full_name taxid
0 CD33_HUMAN Myeloid cell surface antigen CD33 9606
1 CCD33_HUMAN Coiled-coil domain-containing protein 33 9606

find entries by a list of gene names

>>> query.entry(name=('TREM2_HUMAN', 'CD33_HUMAN'))
[Myeloid cell surface antigen CD33, Triggering receptor expressed on myeloid cells 2]

If an attribute ends of an s it a clear hint that this is an 1:n or n:m relationship like keywords. There could
be several proteins linked to a keyword, but also several keywords are linked to one protein. Next lines of code shows
how to query for all proteins linked to the keyword ‘Neurodegenaration’ and returns the gene names.

>>> results = query.entry(keywords='Neurodegeneration')
>>> len(results) # number of results
322
>>> [x.gene_name for x in results][:3] # show only the first 2 gene names
['CHMP1A', 'CLN3', 'COQ8A']

Every element in the list represents a pyuniprot.manager.models.Entry instance:

>>> first_protein = results[0] # fetch first result
>>> type(first_protein)
pyuniprot.manager.models.Entry
>>> first_protein
Charged multivesicular body protein 1a
get first 3 of all other keywords to this protein
>>> first_protein.keywords[:3]
[Reference proteome:KW-1185, Coiled coil:KW-0175, Repressor:KW-0678]

Properties

q.gene_forms
q.interaction_actions
q.actions
q.pathways

Query Manager Reference

Data Models

PyUniProt uses SQLAlchemy [http://www.sqlalchemy.org/] to store the data in the database.
Use instance of pyuniprot.manager.query.QueryManager to query the content of the database.

Entity–relationship model:

[image: _images/all.png]

Contents

	Data Models

	Entry

	Accession

	OtherGeneName

	Sequence

	Disease

	DiseaseComment

	AlternativeFullName

	AlternativeShortName

	Accession

	Pmid

	OrganismHost

	DbReference

	Feature

	Function

	Keyword

	ECNumber

	SubcellularLocation

	TissueSpecificity

	TissueInReference

Entry

Accession

OtherGeneName

Sequence

Disease

DiseaseComment

AlternativeFullName

AlternativeShortName

Accession

Pmid

OrganismHost

DbReference

Feature

Function

Keyword

ECNumber

SubcellularLocation

TissueSpecificity

TissueInReference

1. Roadmap

Next steps:

	Export of query results to different formats

	Tests for all query functions

	Improve documentation and tutorials

	Increase code coverage [https://en.wikipedia.org/wiki/Code_coverage]

	Collections of Jupyter notebooks [http://jupyter.org/] with examples

2. Technology

Warning

The following is in the moment not implemented!
But already written here that a lot of things all still need to be done.

This page is meant to describe the development stack for PyUniProt, and should be a useful introduction for contributors.

2.1. Versioning

PyUniProt is kept under version control on GitHub. This allows for changes in the software to be tracked over time, and
for tight integration of the management aspect of software development. Code will be in future produced following the
Git Flow philosophy, which means that new features are coded in branches off of the development branch and merged
after they are triaged. Finally, develop is merged into master for releases. If there are bugs in releases that
need to be fixed quickly, “hot fix” branches from master can be made, then merged back to master and develop after
fixing the problem.

2.2. Testing in PyUniProt

PyUniProt is written with unit testing. Whenever possible, PyUniProt will prefers to practice test-
driven development. This means that new ideas for functions and features are encoded as blank classes/functions and
directly writing tests for the desired output. After tests have been written that define how the code should work,
the implementation can be written.

Test-driven development requires us to think about design before making quick and dirty implementations. This results in
better code. Additionally, thorough testing suites make it possible to catch when changes break existing functionality.

Tests are written with the standard unittest library.

2.2.1. Tox

While IDEs like PyCharm provide excellent testing tools, they are not programmatic.
Tox [https://tox.readthedocs.io/en/latest/] is python package that provides
a CLI interface to run automated testing procedures (as well as other build functions, that aren’t important to explain
here). In PyBEL, it is used to run the unit tests in the tests folder with the py.test harness. It also
runs check-manifest, builds the documentation with sphinx, and computes the code coverage of the tests.
The entire procedure is defined in tox.ini. Tox also allows test to be done on many different versions of
Python.

2.2.2. Continuous Integration

Continuous integration is a philosophy of automatically testing code as it changes. PyUniProt makes use of the Travis CI
server to perform testing because of its tight integration with GitHub. Travis automatically installs git hooks
inside GitHub so it knows when a new commit is made. Upon each commit, Travis downloads the newest commit from GitHub
and runs the tests configured in the .travis.yml file in the top level of the PyUniProt repository. This file
effectively instructs the Travis CI server to run Tox. It also allows for the modification of the environment variables.
This is used in PyUniProt to test many different versions of python.

2.2.3. Code Coverage

Is not implemented in the moment, but will be added in the next months.

2.3. Distribution

2.3.1. Versioning

PyUniProt tries to follow in future the following philosophy:

PyUniProt uses semantic versioning. In general, the project’s version string will has a suffix -dev like in
0.3.4-dev throughout the development cycle. After code is merged from feature branches to develop and it is
time to deploy, this suffix is removed and develop branch is merged into master.

The version string appears in multiple places throughout the project, so BumpVersion is used to automate the updating
of these version strings. See .bumpversion.cfg for more information.

2.3.2. Deployment

Code for PyUniProt is open-source on GitHub, but it is also distributed on the PyPI (pronounced Py-Pee-Eye) server.
Travis CI has a wonderful integration with PyPI, so any time a tag is made on the master branch (and also assuming the
tests pass), a new distribution is packed and sent to PyPI. Refer to the “deploy” section at the bottom of the
.travis.yml file for more information, or the Travis CI PyPI
deployment documentation [https://docs.travis-ci.com/user/deployment/pypi/].
As a side note, Travis CI has an encryption tool so the password for the PyPI account can be displayed publicly
on GitHub. Travis decrypts it before performing the upload to PyPI.

Index

 _static/models/organism_host.png
Organlsmhost
*id INTEGER
entry_id INTEGER
otaxid INTEGER

oentry PROPERTY

fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_shart_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/other_gene_name.png
OtherGeneName.

*id INTEGER
entry_id INTEGER

o name VARCHAR(255)

otype_ VARCHARI2SS)

oentry PROPERTY

fentry_id
Enty

*id INTEGER

o created DaTe

© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTe

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
o db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
o pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
© tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/function.png
Function
*id INTEGER
entry_id INTEGER
otet TEXT
oentry PROPERTY

fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_shart_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/keyword.png
Enty

*id INTEGER
o created DaTe
© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTe
© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

o taid INTEGER
o version INTEGER

Keyword © accessions PROPERTY.

*id INTEGER © alternative_full_names PROPERTY.

© identifier VARCHAR(255) © alternative_short_names PROPERTY.

oname TEXT o db_references PROPERTY

o entries PROPERTY o disease_comments PROPERTY

© ec_numbers PROPERTY

© features PROPERTY

© functions PROPERTY

© keywords PROPERTY

© organism_hosts. PROPERTY

© other_gene_names PROPERTY

o pmids PROPERTY

© sequence PROPERTY

o subcellular_locations PROPERTY

© tissue_in_references PROPERTY

o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/subcellular_location.png
Enty

*id INTEGER
o created DaTe
© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTe
© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

o taid INTEGER
o version INTEGER

T © accessions PROPERTY.

i — © alternative_full_names PROPERTY

 location VARCHAR(2SS) © alternative_short_names PROPERTY

S i o db_references PROPERTY

o disease_comments PROPERTY

© ec_numbers PROPERTY

© features PROPERTY

© functions PROPERTY

© keywords PROPERTY

© organism_hosts. PROPERTY

© other_gene_names PROPERTY

o pmids PROPERTY

© sequence PROPERTY

o subcellular_locations PROPERTY

© tissue_in_references PROPERTY

o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_images/aetionomy-logo.png

_static/models/tissue_in_reference.png
Enty

*id INTEGER
o created DaTe
© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTe
© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

o taid INTEGER
o version INTEGER

T © accessions PROPERTY.

N — © alternative_full_names PROPERTY.

 esue VARCHARIZSS) © alternative_short_names PROPERTY.

i o db_references PROPERTY

o disease_comments PROPERTY

© ec_numbers PROPERTY

© features PROPERTY

© functions PROPERTY

© keywords PROPERTY

© organism_hosts. PROPERTY

© other_gene_names PROPERTY

o pmids PROPERTY

© sequence PROPERTY

o subcellular_locations PROPERTY

© tissue_in_references PROPERTY

o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/pmid.png
Enty

*id INTEGER
o created DaTe

© dataset VARCHAR(255)

© gene_name VARCHAR(255)

© madified DaTe

© name VARCHAR(255)

© recommended_full_name TEXT

© recommended_short_name TEXT =]

o taid INTEGER S TEEE

o version INTEGER . date INTEGER

© accessions UL ofirst VARCHAR(255)
© alternative_full_names PROPERTY. gy
© alternative_short_names PROPERTY. sy e
o db_references PROPERTY iy e

o disease_comments PROPERTY e T

© ec_numbers PROPERTY - volume INTEGER

© features PROPERTY e YerEia3] FROPERTT

© functions PROPERTY

© keywords PROPERTY

© organism_hosts. PROPERTY

© other_gene_names PROPERTY

o pmids PROPERTY

© sequence PROPERTY

o subcellular_locations PROPERTY

© tissue_in_references PROPERTY

o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/sequence.png
Sequence

*id INTEGER

entryid INTEGER
© sequence TEXT

oentry PROPERTY
fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/ajax-loader.gif

_images/all.png
*id

INTEGER

“ entry_id INTEGER

TEXT

*id INTEGER + entry_id INTEGER
VARCHAR(255)
VARCHAR(255)

+ entry_id INTEGER © identifier
o name TEXT © type,

*id INTEGER
© acronym VARCHAR(255)
© description TEXT

© identifier VARCHAR(255)
© name TexT

o refid VARCHAR(255)
o ref_type VARCHAR(255)

“ disease_id INTEGER

© ec_number VARCHAR(255)

o type. VARCHARI255) ‘oentry PROPERTY.

ntry_id

* m
o created
© dataset
© gene_name
© madified

o taid

© recommended_full_name TEXT

© recommended_short_name TEXT
INTEGER
INTEGER

*id INTEGER
“ entry_id INTEGER

o name VARCHAR(255)
o (ype VARCHAR(255)

*id INTEGER *id INTEGER

“entryid INTEGER s entryid INTEGER
© sequence TEXT

© comment TEXT

ntry_id

INTEGER
DATE
VARCHAR(255)
VARCHAR(255)
DATE
VARCHAR(255)

generated by sadisplayv0.4.8

*id INTEGER
“entryid INTEGER
© accession VARCHAR(255)

wentryid INTEGER
+ keyword_id INTEGER

eyword_id

*id INTEGER
© identifier VARCHAR(255)
oname TEXT

“entryid INTEGER
< pmid_id INTEGER

*id INTEGER

date INTEGER
first VARCHAR(255)
last VARCHAR(255)
name VARCHAR(255)
pmid INTEGER

e TEXT

volume INTEGER

+ entry_id INTEGER
“ subcellularlocation_id INTEGER

Sty 1d [subcellularlocation_id

*id INTEGER
© location VARCHAR(255)

+ entry_id INTEGER
“ tissueinreference_id INTEGER

issueinreference_id

* m INTEGER
o tissue VARCHAR(255)

*id INTEGER
oemail VARCHAR(255)
oname VARCHAR(255)

© password VARCHAR(255)
© username VARCHAR(255)

_static/models/tissue_specificity.png
TissueSpecificity
*id INTEGER
entryid INTEGER
© comment TEXT
oentry PROPERTY

fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_images/imi-logo.png
|nnovat|ve
medicines
initiative

amp

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 PyUniProt Documentation

 		
 Installation

 		
 System requirements

 		
 Supported databases

 		
 Install software

 		
 MySQL/MariaDB setup

 		
 Updating

 		
 Changing database configuration

 		
 Quick start

 		
 Tutorial

 		
 Query functions

 		
 Before you query

 		
 1. You can use % as a wildcard.

 		
 2. limit to restrict number of results

 		
 3. Return pandas.DataFrame as result

 		
 4. show all columns as dict

 		
 5. Return single values with key name

 		
 6. Access to the linked data models (1-n, n-m)

 		
 7. Entry name is available in almost all methods

 		
 entry

 		
 disease

 		
 disease_comment

 		
 other_gene_name

 		
 alternative_full_name

 		
 alternative_short_name

 		
 accession

 		
 pmid

 		
 organismHost

 		
 dbReference

 		
 feature

 		
 function

 		
 keyword

 		
 ec_number

 		
 subcellular_location

 		
 tissue_specificity

 		
 tissue_in_reference

 		
 Query properties

 		
 dbreference_types

 		
 taxids

 		
 datasets

 		
 feature_types

 		
 subcellular_locations

 		
 tissues_in_references

 		
 keywords

 		
 RESTful API

 		
 UniProt

 		
 About

 		
 Citation

 		
 Links

 		
 Benchmarks

 		
 MySQL/MariaDB

 		
 Query

 		
 Examples

 		
 Methods by examples

 		
 Properties

 		
 Query Manager Reference

 		
 Data Models

 		
 Entry

 		
 Accession

 		
 OtherGeneName

 		
 Sequence

 		
 Disease

 		
 DiseaseComment

 		
 AlternativeFullName

 		
 AlternativeShortName

 		
 Accession

 		
 Pmid

 		
 OrganismHost

 		
 DbReference

 		
 Feature

 		
 Function

 		
 Keyword

 		
 ECNumber

 		
 SubcellularLocation

 		
 TissueSpecificity

 		
 TissueInReference

 		
 Roadmap

 		
 Technology

 		
 Versioning

 		
 Testing in PyUniProt

 		
 Tox

 		
 Continuous Integration

 		
 Code Coverage

 		
 Distribution

 		
 Versioning

 		
 Deployment

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/logos/aetionomy-logo.png

_static/logos/imi_logo.png
innovative
medicines
initiative

_static/logos/phago_logo.jpeg
PHAGO

_static/logos/aetionomy_logo.png
AETIOF,J%

_static/logos/imi-logo.png
|nnovat|ve
medicines
initiative

amp

_static/logos/scai_logo.png
—
~ Fraunhofer
SCAI

_static/logos/project_logo_large.png
OO0

_static/logos/scai-logo.png
\

~ Fraunhofer
SCAI

_static/models/accession.png
Accession

*id INTEGER
entryid INTEGER

© accession VARCHAR(255)

oentry PROPERTY
fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_shart_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/all.png
*id

INTEGER

“ entry_id INTEGER

TEXT

*id INTEGER + entry_id INTEGER
VARCHAR(255)
VARCHAR(255)

+ entry_id INTEGER © identifier
o name TEXT © type,

*id INTEGER
© acronym VARCHAR(255)
© description TEXT

© identifier VARCHAR(255)
© name TexT

o refid VARCHAR(255)
o ref_type VARCHAR(255)

“ disease_id INTEGER

© ec_number VARCHAR(255)

o type. VARCHARI255) ‘oentry PROPERTY.

ntry_id

* m
o created
© dataset
© gene_name
© madified

o taid

© recommended_full_name TEXT

© recommended_short_name TEXT
INTEGER
INTEGER

*id INTEGER
“ entry_id INTEGER

o name VARCHAR(255)
o (ype VARCHAR(255)

*id INTEGER *id INTEGER

“entryid INTEGER s entryid INTEGER
© sequence TEXT

© comment TEXT

ntry_id

INTEGER
DATE
VARCHAR(255)
VARCHAR(255)
DATE
VARCHAR(255)

generated by sadisplayv0.4.8

*id INTEGER
“entryid INTEGER
© accession VARCHAR(255)

wentryid INTEGER
+ keyword_id INTEGER

eyword_id

*id INTEGER
© identifier VARCHAR(255)
oname TEXT

“entryid INTEGER
< pmid_id INTEGER

*id INTEGER

date INTEGER
first VARCHAR(255)
last VARCHAR(255)
name VARCHAR(255)
pmid INTEGER

e TEXT

volume INTEGER

+ entry_id INTEGER
“ subcellularlocation_id INTEGER

Sty 1d [subcellularlocation_id

*id INTEGER
© location VARCHAR(255)

+ entry_id INTEGER
“ tissueinreference_id INTEGER

issueinreference_id

* m INTEGER
o tissue VARCHAR(255)

*id INTEGER
oemail VARCHAR(255)
oname VARCHAR(255)

© password VARCHAR(255)
© username VARCHAR(255)

_static/models/db_reference.png
DbReference

*id INTEGER
entry_id INTEGER

© identifier VARCHAR(255)

o type_ VARCHAR(255)

o entry PROPERTY.

» bx_pyuniprot_dbreference_identifier INDEX(identifier)

ntry_id
Enty

*id INTEGER

o created DaTE

© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
© version INTEGER

© accessions PROPERTY
© alternative_full_names PROPERTY
© alternative_short_names PROPERTY
o db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
© tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/disease.png
DiseaseComment

*id INTEGER
disease_id INTEGER
entryid INTEGER

o comment TEXT

o disease PROPERTY

oentry PROPERTY

isease_id \entry_id

Enty
*id INTEGER

o created DaTE

© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

Disease o taid INTEGER
*id INTEGER © version INTEGER
© acronym VARCHAR(255) © accessions PROPERTY
o description TEXT © alternative_full_names PROPERTY
© identifier VARCHAR(255) © alternative_short_names PROPERTY
© name TEXT o db_references PROPERTY
o refid VARCHAR(255) o disease_comments PROPERTY
o ref_type VARCHAR(255) © ec_numbers PROPERTY
o disease_comments PROPERTY © features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
© tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/alternative_full_name.png
AlternativeFullName.
*id INTEGER
entry_id INTEGER
oname TEXT
oentry PROPERTY

fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_shart_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/alternative_short_name.png
AltenativeShortName
*id INTEGER
entry_id INTEGER
oname TEXT
oentry PROPERTY

fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/feature.png
Feature

*id INTEGER
entryid INTEGER

© description VARCHAR(255)

o identifier VARCHAR(255)

otype_ VARCHAR(25S)
o entry PROPERTY.
fentry_id
Enty

*id INTEGER

o created DaTE

© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
© version INTEGER

© accessions PROPERTY
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
o db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
© tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/ec_number.png
ECNumber

*id INTEGER
entryid INTEGER

© ec_number VARCHAR(255)

o entry PROPERTY.
fentry_id
Enty.

*id INTEGER

o created DaTe

o dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTE

© name VARCHAR(255)

recommended_full_name TEXT
recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
© db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
© pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
o tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

_static/models/entry.png
Entry

*id INTEGER
o created DaTe
© dataset VARCHAR(255)
© gene_name VARCHAR(255)
© madified DaTe
© name VARCHAR(255)

© recommended_full_name TEXT
© recommended_short_name TEXT

o taid INTEGER
o version INTEGER

© accessions PROPERTY.
© alternative_full_names PROPERTY.
© alternative_short_names PROPERTY.
o db_references PROPERTY
o disease_comments PROPERTY
© ec_numbers PROPERTY
© features PROPERTY
© functions PROPERTY
© keywords PROPERTY
© organism_hosts. PROPERTY
© other_gene_names PROPERTY
o pmids PROPERTY
© sequence PROPERTY
o subcellular_locations PROPERTY
© tissue_in_references PROPERTY
o tissue_specificities PROPERTY

generated by sadisplayv0.4.8

